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1. Introduction

Predictions of high frequency interior noise levels in transportation vehicles and aircraft
structures are normally based on Statistical Energy Analysis [1]. An important parameter in such
models is the coupling loss factor that describes the exchange of power between the vibrating
panel structures and the acoustic cavity formed by the cabin. This coupling loss factor is often
calculated from knowledge of the radiation efficiency, which describes the relation between the
mean-square vibration velocity (time and spatially averaged) of the structure and the sound power
it radiates into a semi-infinite fluid space. Expressions for a modal-averaged radiation efficiency of
a simply supported, rectangular isotropic plate placed in an otherwise rigid co-planar baffle were
first derived by Maidanik [2]. Leppington et al. [3] have given a more detailed analysis of this
particular case together with an improved expression for the modal-averaged radiation efficiency
at the coincidence frequency. In practice, the conditions of simply supported edges and a plane
baffle are rarely fulfilled. These two factors have been known to have a non-negligible influence on
the radiation efficiency below the coincidence frequency, see for example Heron [4] and Fahy [5].
More recently, expressions have been derived that permit calculation of the radiation efficiency of
plates having constraint conditions at the edges that are somewhere between simply supported
and clamped [6], and further with a baffle that is not necessarily co-planar with the plate, but has
an arbitrary wedge-shaped form [7].
In this paper the analytical results of Leppington et al. [3,6,7] are employed in two ways. Firstly,

for isotropic plates, they are used to calculate modal-averaged correction factors that allow the
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modal-averaged radiation efficiency of edge modes to be corrected for the influence
of the boundary constraint conditions as well as the angle of the baffle. Secondly, the
asymptotic and transition expressions for the radiation efficiency are used in a numerical
routine to calculate modal-averaged radiation efficiencies for orthotropic plates. Finally,
radiation efficiencies of a practically mounted isotropic plate are predicted and validated
experimentally for three typical baffle angles, namely p=2; p and 3p=2 radians. These baffle angles
correspond to practical arrangements where the plate radiates, respectively, (i) into a rigid,
rectangular tunnel-space or duct, (ii) into the commonly examined semi-infinite space and (iii) into
a duct-excluded ‘full’, infinite space. The test-plate is bolted to the edges of a four-sided open box
structure, which is then mounted in a fixture in order to form the various baffle configurations.
The actual edge constraints describing the plate boundary conditions are estimated from
measured resonance frequencies and their corresponding deformation shapes or ‘mode numbers’
of the plate. Predicted values of the modal-averaged radiation efficiency corrected for the
influence of baffle angle and the edge constraint are compared with measured values with good
agreement.

2. Modal-averaged sound radiation from isotropic and orthotropic plates

The radiating structure considered herein consists of a flat rectangular plate in flexural
vibration. The plate has the length a and width b and is placed in an otherwise rigid, wedge-
shaped baffle with sides that are arranged at an angle j relative to the xy-plane of the plate. This
arrangement is depicted in Fig. 1, which also indicates that the plate is vibrating in a specific rth
normal mode of vibration. This rth mode is characterized by the discrete bending wavenumber
vector kr with wavenumber components kr;x and kr;y in the x and y directions, respectively, such
that k2

r ¼ k2
r;x þ k2

r;y: In the plane of the plate the inclination angle yr of the wavenumber vector kr

ARTICLE IN PRESS

Fig. 1. Vibrating rectangular plate placed in a wedge-shaped, rigid baffle.
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with respect to the x-axis thus reads yr ¼ arctanðkr;y=kr;x). Therefore, the normal mode
can be considered as the result of to and fro ‘bouncing’ plane waves with inclination yr

and wavenumber kr: Although kr and hence yr take discrete values accordingly, it was
found [3] that it is mathematically convenient in radiation predictions to consider the plate’s free
bending wavenumber vector kb � kr and the inclination angle y � yr to vary continuously over all
relevant values.

2.1. Isotropic plates

The sound radiation efficiency s of a flat, isotropic plate in harmonic bending motion
is known to be a function of the magnitudes of the plate’s modal wavenumber-components
relative to the wavenumber k0 ¼ o=c0 of the acoustic medium, where c0 is its speed of sound
and o is the angular frequency. This dependency is conveniently expressed by the non-
dimensional parameters a and b that specify the bending wavenumber components in x and y

relative to k0; as

a ¼
kb cosðyÞ

k0
and b ¼

kb sin ðyÞ
k0

; ð1; 2Þ

in which the bending wavenumber is given by kb ¼ ðo2rh=DÞ1=4; where r is plate density, h is
thickness and D is the bending stiffness. It is seen that these parameters are defined in terms of the
plate wavenumber vector kb and its angle of inclination y with the x-axis, or in other words, the
‘angle of propagation’ of bending waves.
Leppington et al. [3] have developed asymptotic expressions for the radiation efficiency of a

simply supported plate set in a rigid, co-planar baffle. His modal representation of the radiation
efficiency will be denoted by sssðo; a; bÞ ¼ sssðyÞ; and for ease of reference, some of the results for
various regimes in the ða; bÞ-representation will be given. The most important characteristic
frequency for sound radiation is the coincidence frequency oc; defined by the coincidence of plate
bending phase speed with the phase speed in the acoustic medium. This angular frequency is given
by oc ¼ c20ðrh=DÞ1=2:
Beginning above the coincidence frequency, o > oc; where the plate radiates as a whole, the

radiation efficiency is found to be

sssðyÞE1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2 � b2

q�
for a2 þ b2o1: ð3Þ

In the frequency range lying below the coincidence frequency the sound radiation is mainly domi-
nated by plate-edge radiation (edge modes) and the radiation efficiency of the plate is found as

sssðyÞE
1

k0aa
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2 � 1

q 1þ
a2

a2 þ b2 � 1

� �
for a > 1; b > 1: ð4Þ

A corresponding expression for the case of ao1; b > 1; is obtained by replacing a with b and a

with b: Radiation by so-called corner modes is very small, that is

sssðyÞE0þ Oðk�2
0 Þ for a > 14b > 1: ð5Þ
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In addition, in Ref. [3], expressions are given for the transition zones between Eqs. (3) and (5). For
example, at coincidence the radiation efficiency is found to be

sssðyÞ ¼
2

15
5�

ab
ba

� � ffiffiffiffiffiffiffi
k0a

pb

s
for a2 þ b2 ¼ 14ab > ba: ð6Þ

These expressions describe the radiation efficiency sss in the ða;bÞ-domain. Fig. 2 shows an
example of such a three-dimensional diagram of sss: Coincidence corresponds to the circle ridge
given by: a2 þ b2 ¼ 1: The data-values used for calculation of Fig. 2 are for an isotropic plate with
a coincidence frequency at 4000 Hz: The frequency range shown is from 1000 Hz ða; b ¼ 2; 2Þ to
infinity, which corresponds to a;b ¼ 0; 0:
The main difficulty with using the presented asymptotic expressions for sss is to determine

suitable limits for when to change/switch from the asymptotic expressions to the transition
expressions and vice versa. However, once such suitable limits have been determined, then the
ða;bÞ-representation of the radiation efficiency sðyÞ permits calculation of the very useful modal-
averaged radiation efficiency %s: This is calculated by averaging over a given frequency band Do;
which, in the ða; bÞ-representation of s; corresponds to a wavenumber band Dk having the shape
of a circle for isotropic plates. Thus, the modal-averaged radiation efficiency %s for an isotropic
plate is calculated as

%s ¼
2

p

Z p=2

0

sðyÞ dy: ð7Þ

From this, analytical expressions can be derived for the modal-averaged radiation efficiency %sss

for a simply supported plate in a plane baffle, when the contribution from the insignificant corner
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Fig. 2. Radiation efficiency, 10 log sss; for a simply supported, isotropic plate with a coincidence frequency at 4000 Hz:
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region, a > 1 and b > 1; is set to zero. This procedure leads to the same analytical expressions for

%sss as were given in Ref. [2,3].

2.2. Orthotropic plates

For an orthotropic plate there are two factors that will influence the calculation of the modal-
averaged radiation efficiency. Firstly, the bending wavenumber is a function of the angle y; and the
integration path in the ða; bÞ-representation of the radiation efficiency will have a shape resembling
an ellipse [5]. Integration can thereby include both supersonic and subsonic bending wavenumber
components. Secondly, the modal density is also a function of the angle y and it is necessary to take
this into account if the SEA requirement of equipartition of modal energy is to be fulfilled.

2.2.1. Dispersion relation for the bending wavenumber

For orthotropic plates, the bending wavenumber depends upon the angle y: This dependency
can be determined by considering the wave equation for thin orthotropic plates [8]

h3

12

Ex

ð1� nxynyxÞ
@4w

@x4
þ 2

nxyEy

ð1� nxynyxÞ
þ 2G

� �
@4w

@x2@y2
þ

Ey

ð1� nxynyxÞ
@4w

@y4

� �

þ rh
@2w

@t2
¼ 0; ð8Þ

in which w is the transverse displacement of the plate, h is the thickness, r is the mass density, Ex

and Ey are Young’s modulae in the x and y-directions, respectively, G is the shear modulus and
nxy and nyx are the Poisson ratios related by Exnyx ¼ Eynxy:
If the displacement of the bending waves is assumed to be of the form

wðx; y; tÞ ¼ A expf�jkb cosðyÞx � jkb sinðyÞy þ jotg; ð9Þ

then substitution of Eq. (9) in Eq. (8) yields the dispersion relation for the angle-dependent
bending wavenumber kbðyÞ

kbðyÞ ¼
ffiffiffiffi
o

p ffiffiffiffiffiffiffiffiffiffi
rh

DðyÞ
4

s
; ð10Þ

where the bending stiffness DðyÞ; is given as

DðyÞ ¼
h3

12

Ex cos
4ðyÞ

ð1� nxynyxÞ
þ 2

nxyEy

ð1� nyxnxyÞ
þ 2G

	 

cos2ðyÞ sin2ðyÞ

(

þ
Ey sin

4ðyÞ
ð1� nyxnxyÞ

)
: ð11Þ

The resulting wavenumber diagram given by Eqs. (10) and (11) will have a shape resembling an ellipse.

2.2.2. Equipartition of modal energy

For an SEA subsystem like the bending wave field in the plate it is assumed that the total energy
is evenly distributed amongst the resonant modes of the subsystem. The implication of such
equipartition of modal energy for an orthotropic subsystem can be resolved by introducing
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an angle-dependent modal density term nðyÞ; such that the subsystem modal density n is
determined as

n ¼
Z p

0

nðyÞ dy; ð12Þ

see, for example, Lyon et al. [1] and Langley [9]. The term nðyÞ; which is interpreted as the modal
density (per radian) associated with waves of heading angle y; is given as

nðyÞ ¼
ab

2p2
kbðyÞ

@kbðyÞ
@o

; ð13Þ

where the derivative expression is noted to be the (group speedÞ�1 of plate waves of heading angle
y: By utilizing this angle dependency the energy density of waves of heading y in the subsystem can
then be calculated as

eðyÞ ¼
EnðyÞ
abn

; ð14Þ

where E is the total energy of the subsystem of area ab:
Finally, the modal-averaged sound radiation efficiency %s for an orthotropic plate can then be

calculated from the similarly modal-density-weighted expression

%sE
Z p

0

sðyÞnðyÞ
n

dy; ð15Þ

where the integration for fixed o is performed along the path specified by Eqs. (10) and (11). It is
necessary to do the integration over p; as the main axis of a general orthotropic plate might not
coincide with the plate edges.

2.2.3. Example of sound radiation from orthotropic plates in a coplanar baffle
An example of computed results based on Eq. (15) is shown in Fig. 3; the orthotropic plate is

simply supported and set in a coplanar baffle. Here, the modal-averaged radiation efficiency is
calculated for a conceptual fibre-reinforced polyester plate with various values of the reinforcing
ratio Ex=Ey; where Ex and Ey are Young’s modulae in the x and y -directions, respectively. Thus,
a ratio of unity corresponds to an isotropic plate while other ratios correspond to orthotropic
plates of increasing degree. The base material’s properties are: Ey ¼ 4:5	 109 N=m2; r ¼
1250 kg=m3; G ¼ 1:73 109 N=m2; nxy ¼ 0:3; a ¼ 2 m; b ¼ 1 m; and h ¼ 0:008 m: Note that the
mass density of the plate is assumed unchanged for simplicity.
The orthotropic plates are seen to have two coincidence frequencies, fc;x and fc;y; where fc;xofc;y:

Moreover, increasing values of the ratio Ex=Ey results in higher radiation below fc;x: Above fc;x;
the radiation efficiency is seen to decrease slightly with increasing values of the ratio Ex=Ey:
Thus, as the contribution of subsonic modes increase, more of the modes lie outside the circle
a2 þ b2 ¼ 1:

3. Corrections for baffle angle and plate-edge constraints

The angle of the baffle as well as the plate’s boundary constraint conditions will influence the
radiation efficiency below the coincidence frequency. Analytical expressions have been derived in
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Ref. [6] that give the radiation efficiency for edge modes when the boundary condition can be
described as hinged (simply supported) with an rotational line-spring that resists the rotation of
the plate edge. Hence, by changing the compliance e of the spring, the plate’s boundary conditions
can be varied from a rigidly clamped edge ðe ¼ 0Þ to a simply supported edge ðe-NÞ: In Ref. [7],
the influence of the baffle angle has been examined and analytical expressions are given for the
radiation efficiency for edge modes as a function of the angle j of the baffle, and also for the
combined influence of a rotational spring compliance e and the angle of baffle, j: These
expressions for the radiation efficiency are given as functions of the ‘angle of propagation’, y; of
the bending waves.
Due to the high complexity of these expressions, it does not seem practical to calculate the

modal averages of these radiation efficiencies. Instead, it is suggested to use the derived analytical
expressions for the modal-averaged radiation efficiency %sss as base-line predictions and to modify/
correct these by a multiplication correction-factor QðgÞ; which accounts for the radiation effects of
the actual edge constraints and the baffle angle if this is different from p: Expressed as a function
of the ‘global’ wavenumber ratio g ¼ k0=kb this correction-factor, QðgÞ; can be calculated
numerically as [10]

QðgÞ ¼
2

p

Z p=2

0

sf;eðg; yÞ
%sss

dy; ð16Þ

where sj;eðg; yÞ is the radiation efficiency for the type of baffle angle and edge modes in question.
The variations of the correction-factor QðgÞ have been computed for three important practical

cases of baffle angle, j ¼ p=2;p; 3p=2; with the edge-constraint compliance e as parameter; this is

ARTICLE IN PRESS

Fig. 3. Modal-averaged radiation efficiencies 10 log %s of a plate with various ratios Ex=Ey of x- and y-wise Young’s moduli.
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expressed in a non-dimensional form by the product k0eD; where D is the plate bending stiffness.
Fig. 4 shows the computed results, which are based on the assumption that the boundary
conditions and the baffle angles are identical at all four plate-edges. In addition, it has been
assumed that s ¼ 0 in the corner mode range: a > 14b > 1: The results in Fig. 4 are seen to agree
with the expected limiting values [7], that is

QðgÞ ¼ 2 for e ¼ 04 j ¼ p; QðgÞ ¼
p
j

for e-N4g51: ð17; 18Þ

Eq. (17), for example, shows that the radiation from a clamped plate in a co-planar baffle is
enhanced by a factor of two in comparison to the traditional base-line radiation %sss of the simply
supported case. Moreover, from Fig. 4b it is seen that the radiation of a clamped plate radiating
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Fig. 4. Correction factor QðgÞ as a function of wavenumber ratio g ¼ k0=kb for an isotropic plate, with k0eD as

parameter. Baffle configurations: (a) co-planar baffle, j ¼ p; (b) rectangular duct-baffle, j ¼ p=2; and (c) duct-excluded

free-space, j ¼ 3p=2:
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into a rectangular room is expected to increase by a factor of four for go0:1 in comparison to the
traditional base-line radiation, %sss:
Thus, for a given value of g ¼ k0=kb and a specific value of e; the product k0eD is calculated and

the correction-factor QðgÞ can be interpolated from Fig. 4. The modal-averaged radiation
efficiency for the edge modes can then be calculated as

%sðgÞ ¼ QðgÞ %sssðgÞ for gp1: ð19Þ

Above the coincidence frequency (i.e., for g > 1), the whole plate surface is radiating sound power
and the influence of constrained edges and the angle of the baffle are negligible. If the boundary
constraint conditions given by e and the angle j of the baffle are different for the various plate
edges, then an average value of QðgÞ can be estimated as shown in Ref. [10].

4. Predictions and experimental validation of sound radiation from a plate under the influence of

baffle angle and edge constraints

In order to demonstrate and validate the influence of baffle angles and boundary constraint
conditions, the radiation efficiency of an isotropic plate was predicted numerically and
subsequently measured. This was done for a single test case of a rectangular aluminium-alloy
plate for the three configurations of baffle angles studied in the previous section, that is, for
j ¼ p=2; p and 3p=2: The practical implementation of these three baffle configurations is
illustrated in Fig. 5.

4.1. Plate dimensions and experimental arrangement

The dimensions of the aluminium-alloy plate were 0:61	 0:37	 0:003 m: The plate was bolted
on to the end of a four-panel, welded box-frame that was made out of 3 mm steel plates. This
assembly was then placed in the baffle fixture. The dimensions of the large plane baffle being used
in the configuration shown in Fig. 5a was 1:9	 1:1 m: This baffle was also employed in Fig. 5b in
order to acoustically screen and hence minimize sound radiation contributions from the
supporting box-frame. The open-ended, rectangular ‘duct’-baffle used in Figs. 5b and c had a
length of 0:8 m and a cross-section of 0:64	 0:40 m: The small space between baffle and test-plate
was sealed by elastic tape and soft rubber sealing-material that also served to isolate the baffle
from the vibrating plate. The test arrangement was placed in a well-damped room with a
reverberation time of 0:3 s and a volume of 295 m3:
The aluminium plate was point-excited with random noise by a small electro-dynamic shaker.

The spatial mean-square velocity of the plate was measured with a 2:5 g accelerometer by
averaging the autospectra for 12 randomly chosen response positions. The velocity level at the
plate junctions was also measured in order to ensure that the edge motion was negligible. In the
frequency range from 80 to 1600 Hz it was found that the edge velocity level was from 30 to 20 dB
lower than the velocity level of the plate vibration. The sound power radiated from the plate was
determined by measuring the sound intensity over a control surface close to the plate; these sound
intensity measurements were carried out both with 12 and 50 mm spacers to achieve the best
possible accuracy in the examined frequency range. From these measurements the radiation
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efficiencies of the plate were calculated and the results were synthesized in 1
3
-octave bands. A dual-

channel FFT-analyser was used as front-end in all measurements.

4.2. Determination of plate-edge constraints

In order to be able to predict the correction-factor QðgÞ and hence the radiation efficiency %s it is
necessary to know the apparent rotational spring compliance e that is used for describing the
actual edge constraints at the plate boundary. As the edge constraints of the plate will control its
resonance frequency, it is possible to estimate e from measurements of the plate’s resonance
frequencies and corresponding mode shapes of assumed mode numbers ðm; nÞ: However, in the
present case the estimation of the edge compliance e can only be done approximately, because
the plate vibration cannot be separated from the vibration of the box-frame; the assembly vibrates
as a whole, and vibration of the adjacent box-panels enforces different deformation shapes in
the test-plate at the system’s natural frequencies. Being part of a larger assembly which influences
the deformation shape of the test-plate is of course a very realistic boundary environment for a
plate. Alternatively, e could also be estimated from a FEM-analysis of the whole system. Fig. 6
shows the response-grid ðx1; y1; z1Þ used for measuring the global mode shapes of the test-plate
and adjacent plates of the supporting box-frame. The origin of this coordinate system is located at
the off-centre driving point. The input mobility measured at this point was used for determining
the system’s resonance frequencies and associated damping loss factors, being found from their
3 dB-bandwidth in a polar- or Nyquist-diagram. Further, the global mode shapes were
determined by using pure-tone excitation.
Two examples of such measured global mode shapes of the assembly are illustrated in Fig. 7 by

projecting the modal deformations onto the plane of the paper. With respect to the aluminium
test-plate, its deformation shape and boundary conditions for the identified mode ðm; nÞ ¼ ð1; 2Þ
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Fig. 5. Three baffle configurations for calculating and measuring plate radiation efficiencies. Baffle angle: (a) j ¼ p;
(b) j ¼ p=2; and (c) j ¼ 3p=2:
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are seen to closely resemble a plate mode with clamped-like, y-going edges for m ¼ 1; and
apparently simply-supported, x-going edges for n ¼ 2: Similarly, the deformation shape of mode
(3,2) is seen to resemble a virtually fully clamped test-plate.
A close inspection of the mode shape at the plate edges in Fig. 7a reveals that in addition to the

rotation there is also a very small displacement of the x-going junctions, which is caused by a
rigid-body rocking motion of the box. The influence of such a moving support is not accounted
for in Leppington’s model of a simply supported plate edge with a rotational line spring.
However, in the present case the dipole-type sound radiation from the rocking motion of the box
with sð274ÞB0:5 can be neglected, as its radiation contribution is only 3% of that caused by the
elastic plate mode with s2;1 ¼ 0:02: This results from the velocity amplitude of the rocking motion
being only 1

30
of the plate amplitude.

Table 1 shows the measured resonance frequencies and associated mode numbers, the predicted
natural frequencies for simply supported and clamped cases, measured damping loss factors Z;
and the resulting estimated product of the spring compliance and bending stiffness, eD: The given
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Fig. 6. Response-grid ðx1; y1; z1Þ for measuring global mode shapes of test-plate and supporting box-structure. Origin

of co-ordinate system is located at the off-centre driving point.

Fig. 7. Measured global mode shapes of test-plate and supporting box structure at (a) f1;2 ¼ 274 Hz and (b) f3;2 ¼
452:5 Hz: Major horizontal and major vertical lines are measurement-grid in x1 and y1 and mode deformation of test-

plate. Deformation of the supporting box panels is also shown.
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mode numbers apply for the deformation shape of the test-plate only. The resonance frequencies
at 170.5 and at 204 Hz will, for the assembly, have different mode shapes but the deformation
shapes of the test-plate are very similar for these two cases. Most of the measured resonance
frequencies are seen to be close to a mean value of the theoretical values of the natural frequencies
for the simply supported and clamped cases.
It is recalled that the estimated spring compliance e corresponds to a simply supported plate

with a rotational edge constraint given by eD that has the mode numbers ðm; nÞ and natural
frequency, fm;n: The use of a least-squares-fit to the measured results gives the frequency
dependency of the product eD as

eD ¼ 0:0285þ 0:989	 10�5f : ð20Þ

This, together with the wavenumber ratio g and acoustic wavenumber k0 permits the correction-
factor QðgÞ to be read from Fig. 4.

4.3. Predicted and measured radiation efficiencies

The final numerical predictions of the plate radiation efficiencies for the three baffle angles are
shown in Fig. 8 together with the measured results. Here, the predicted modal-averaged radiation
efficiency %s includes corrections for the influence of both baffle angle and boundary constraint
conditions, given by Eq. (20). Thus, since %s ¼ QðgÞ %sss; the predicted overall influence of the
correction-factor QðgÞ is seen by comparison with the ‘base-line’ prediction %sss; which is also
included in Fig. 8.
Results for the classical case of a plane baffle, j ¼ p; are shown in Fig. 8a. It is seen that the

predicted increase in radiation efficiency due to the edge constraint is reasonably well validated by
the measurements, although some discrepancies occur at the lower frequencies. This is possibly
caused by the small number of radiating plate modes, see Table 1. With a plate modal density of
nðf Þ ¼ 0:024 this corresponds on average to a single mode in the 1

3
-octave band of 200 Hz and

three modes in the 500 Hz band.
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Table 1

Measured mode numbers and resonance frequencies, predicted natural frequencies for simply supported/clamped

conditions, measured damping loss factors and estimated product of eD

Mode ðm; nÞ fm;n (Hz) fm;n (simply s./clamped) (Hz) Z eD

(1,1) 118.5 75/144 0.016 0.0268

(2,1) 170.5 135/209 0.014 0.0365

(2,1) 204.0 135/209 0.015 0.0025

(3,1) 270.0 235/321 0.008 0.0363

(1,2) 274.0 238/362 0.008 0.0773

(3,1) 291.0 235/321 0.010 0.0134

(1,2) 301.5 238/362 0.008 0.0300

(2,2) 352.0 299/424 0.005 0.0365

(4,1) 423.0 376/478 0.009 0.0222

(3,2) 452.5 399/528 0.004 0.0319
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For a baffle angle of j ¼ p=2; the increase in sound radiation due to the baffle alone is
expected to be 3 dB; cf. Eq. (18). This radiation is further enhanced by the contribution due to
the constrained edges. Fig. 8b shows that this trend is generally confirmed, although the
predicted results at the higher frequencies exceed the measured values by about 2 dB: Moreover,
as the predicted results have been derived for one-sided radiation into three-dimensional
free space, they are in principle not valid below the cut-off frequency ð506 HzÞ of the rectangular
duct-baffle section, which has a cross-sectional opening of 0:64	 0:40 m: However, on
average the predicted results at low frequencies are seen to agree reasonably well with the
measured values.
Finally, Fig. 8c shows the results for a baffle angle of j ¼ 3p=2: In this case a slight radiation

decrease of 1:8 dB is expected due to the baffle alone, cf. Eq. (18), in addition to an increase due to
the edge constraint. The combined influence of these two factors is a small enhancement of the
radiation at low frequencies, while at higher frequencies a small decrease is predicted. This specific
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Fig. 8. Modal-averaged radiation efficiencies of an isotropic, rectangular plate that is bounded by different baffle

configurations: r---r; predicted results for 10 log %s;	---	; measured results for 10 log %s; &---&; uncorrected base-line

prediction for 10 log %sss: Baffle angle: (a) j ¼ p; (b) j ¼ p=2; and (c) j ¼ 3p=2:
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spectral trend is not found in the measured results, although the overall agreement with the
prediction is seen to be fairly good. Still, some of the bias-effect may be overcome by making a
relative comparison of the measured results only. So, if the measurements for this condition is
compared directly with the measurements for the plane-baffle-case (Fig. 8a), it is seen that the
radiation in the present 3p=2-case on average is lower by 1:6 dB in the frequency range up till
1600 Hz; and this is close to the predicted effect.

5. Discussions and conclusion

The non-dimensional ða;bÞ-representation of the radiation efficiency, as derived by Leppington
et al., permits calculation of the modal-averaged radiation efficiency for a given type of plate.
These results have been employed here to calculate modal-averaged correction-factors for
isotropic plates and modal-averaged radiation efficiencies for orthotropic plates. The correction-
factor allows the base-line radiation efficiency to be corrected for the influence of the angle of
wedge-shaped baffles and the influence of the boundary conditions (edge constraint). The
calculations show that the radiation may be enhanced by a factor of four for a clamped plate
radiating into a rectangular room in comparison with the well-known base-line prediction for a
simply supported plate in a co-planar baffle. Predicted radiation efficiencies for a vibrating test-
plate with realistic boundary conditions otherwise set in three types of practical baffle
configurations have been compared with measured values with good agreement. The examined
cases of baffle configurations are of practical importance in the prediction of sound radiation into
confined spaces like cockpits, cabins and rooms, and for the prediction of out-wards sound
radiation from closed structures such as cabinets, machine-type panels and the like.
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